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Asymmetric Synthesis of Alcohols with Two Chiral Centres from a Racemic Aldehyde 
by the Selective Addition of Dialkylzinc Reagents using 
(1 S,2R)-( -)-N,N-Dibutylnorephedrine and 
(S)-( +)-Diphenyl-( I-methylpyrrolidin-2-yl)methanol as Chiral Catalysts 
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Optically active alcohols wi th two  chiral centres were obtained in up to  93% enantiomeric excess by the selective 
addition of dialkylzinc reagents t o  the racemic aldehyde, 2-phenylpropanal, using the title compounds as chiral 
catalysts. 

Increasing interest has centred on catalytic asymmetric enantioselective addition of dialklyzinc reagents to aldehydes, 
carbon-carbon bond-forming reactions. 1 Addition of dialkyl- the structures of the alcohols prepared have been limited to 
zinc reagents to aldehydes is usually very slow, but p-amino- those with a single chiral centre. In connection with the 
alcohol derivatives catalyse the addition of diethylzinc to synthesis of alcohols with two chiral centres, the diastereo- 
benzaldehyde .2 Although we3 and others4 have reported the selective addition of organometallic reagents to racemic 
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Table 1. Selective addition of R2Zn to racemic (1) using (6) or (7) as chiral catalysts. 

Alcohols (2)-(5) 

fhre0-[(2), (311 
Entry R Catalyst Yielda/% E.e.b/% Config. 
1" Et (6) a 60 (3.0) 93 (3a) 
2c Bun (6) b 32 (5.0) 92 (3b) 
3d Et (6) a 58 (4.3) 89 (3a) 
4e Et (6) a 62f (6.2) 76 (3a) 
5' Et (7) a 63 (6.3) 68 (3a) 
68 Bun (6) b 16' (6.8) 75 (3b) 

a Isolated total yield of (2)-(5). Figures in parentheses are the ratio of erythro-[(4) and (5)] to fhreo-[(2) and (3)] determined by HPLC analyses. 
Determined by HPLC analyses using a chiral column [Chiralcel OD, 250 mm; 254 nm UV detector; eluant 0.5% propan-2-01 in hexane; flow 

rate 0.4 ml/min; column temperature 35 "C]; retention time (min) 27.9, 30.9, 33.2, 39.5 for (3a), (2a), (4a), (5a), respectively; Chiralcel OJ, 
250 mm; flow rate 0.5 ml/min; column temperature 20°C; retention time (min) 29.8, 33.7, 38.9, 43.2 for (4b), (3b), (2b), (5b). 
Configurations were assigned by comparison with optically active authentic samples [(2)-(5)] prepared from optically active (S)-(1) 
and RMgBr (R = Et, Bun). c Mol ratio (1) : R2Zn: catalyst, 1 : 2:  0.1. d (1) : Et2Zn : (6), 1 : 1 : 0.1. Based on 
R2Zn. g (1) : Bun2Zn : ( 6 ) ,  1 : 0.5 : 0.025. 

(1) : Et2Zn : (6), 1 : 0.5 : 0.05. 

2-phenylpropanal(l) without using optically active auxiliaries 
has been reported. However, these methods afford only 
racemic alcohols.5 

We now report the first asymmetric synthesis of optic- 
ally active alcohols with two chiral centres from the 
racemic aldehyde (1) by the addition of dialkylzinc reagents 
using (1S,2R)-( - ) -N,  N-dibutylnorephedrine (DBNE)3b*c,e>6 
and (S ) -  ( + )-diphenyl( 1 -me thylpyrrolidin-2-y1)me than01 
( D P M P M ) ~ ~ J ~ ~ .  as chiral catalysts. 

Reaction of racemic (1) with diethylzinc (2 equiv.) in 
hexane at room temperature using 10 mol% of (-)-DBNE as 
a chiral catalyst afforded 2-phenylpentan-3-01 in 60% yield 
(threolerythro U3.0). Among the two pairs of enantiomers, 
(2S,3R)-threo-(2a) and (2R,3S)-threo-(3a), and (2S,3S)- 
erythro-(4a) and (2R,3R)-erythro-(5a), (3a) predominated 
for the tho-isomers and (4a) for the erythro-isomers. The 
enantiomeric excess (e.e.) of (3a) and (4a) reached 93 and 
65%, respectively (determined by HPLC analysis using a 

chiral column) (Table 1, entry l).? Under slightly different 
conditions (1 equiv. of EtZZn), (3a) and (4a) were obtained in 
89 and 73% e.e., respectively (entry 3). 

In the reaction of Bun2Zn with racemic-(1) using (-)- 
DBNE as a chiral catalyst, 2-phenylheptan-3-01 (32% ; threo/ 
erythro M.0) was obtained. HPLC analysis showed that 
threo-(3b) and erythro-(4b) were formed, predominantly in 92 
and 84% e.e., respectively. This selectivity of the predomi- 

+ Typical experimental procedure. Racemic (1) (0.98 mmol) was 
added to a solution of (-)-DBNE (0.1 mmol) in hexane (1.3 ml) at 
room temperature. The mixture was cooled to 0 "C, and a solution in 
hexane (2 ml) of Et2Zn (2.0 mmol) was added. The mixture was 
stirred at room temperature for 46 h. The reaction was quenched at 
0°C by the addition of HCl (1 M; 5 ml). The resulting mixture was 
extracted with CH2C12 (4 x 15 ml), dried (NazSO,), and evaporated 
under reduced pressure, and was purified by silica gel TLC (eluant 
AcOEt-hexane, 1 : 5). 
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nant threo-isomer of (3b) in the alkylation may be explained as 
follows. Because both (3) and (4) are (3s)-alcohols, formation 
of these isomers is considered to be the result of the selective 
addition of R2Zn to racemic (1) from the Si-face of the 
aldehyde (1), regardless of the configuration of (1). $ 

Because both enantiomers of DBNE are available, it should 
be possible to synthesise either enantiomer of alcohols. 
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